
That may not sound like much, but if engineers were able to produce a sheet of graphene as thick as ordinary plastic wrap that you use to cover your food dishes, it would take the weight of a heavy car to tear through it. Of course, that's an unrealistic analogy, as graphene is—by definition—only a single atomic layer in thickness, and therefore can't be as thick as a sheet of plastic wrap. But on the nano-scale, graphene has tremendous strength, and it could be added to polymers to form super-strength composites.
Besides its superior strength, graphene has a number of other interesting properties: it has unusually high opacity for an atomic monolayer, it is a zero-gap semiconductor, has remarkably high electron mobility at room temperature, displays an anomalous quantum hall effect in the presence of a magnetic field, and has unexpectedly high thermal conductivity.
No comments:
Post a Comment